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Abstract
To deal with the physics of cuprate superconductivity we propose an electronic phase separation
transition that segregates the holes into high and low density domains. The calculated grain
boundary potential favors the development of intragrain superconducting amplitudes. The zero
resistivity transition arises only when the intergrain Josephson coupling EJ is of the order of the
thermal energy and phase locking takes place among the superconducting grains. We show that
this approach explains the pseudogap and superconducting phases and it also reproduces some
recent scanning tunneling microscopy data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The nature of the pseudogap phase has been widely recognized
to be the key to understanding the physics of cuprate
superconductors and their complex phase diagram [1, 2]. At
present, there is no consensus on its origin and also no
agreement on the detailed generic doping dependence p of the
pseudogap temperature T ∗(p) [2]. This difficulty in finding
a unified explanation for the data collected in many different
experiments is certainly due to the intricate charge dynamics
of cuprate superconductors.

To deal with these complicated charge dynamics we have
previously proposed a static phase separation [3–6] based on
the experimental evidence of ion diffusion in La2CuO4+δ and
in Bi2212 above room temperature. The experimental data are
consistent with phase separation at the upper pseudogap T 0(p)

(in the notation of [1]) and consequently the ionic segregation
transition must occur at a higher temperature TPS(p). Since
T 0(p) (and TPS(p)) falls to zero in the overdoped regime and
ionic mobility requires high temperatures, we previously used
a bimodal like charge disorder for underdoped compounds
and a continuous Gaussian distribution for overdoped ones
[5–7]. However, new scanning tunneling microscopy (STM)
data have shown an inhomogeneous local gap structure that
remains in the far overdoped regime [8–10] which cannot be
explained by an ionic phase separation, due to the low values
of T 0(p) for p values larger than 0.2. These new STM results
on distinct doping regimes have clearly shown local gaps with

different amplitudes at temperatures below and above the zero
resistivity transition Tc(p) [9, 10] which rule out ionic phase
separation as the sole origin of the cuprate inhomogeneities.

Here, in order to have a unified description of the STM
data in the overdoped and underdoped regions of the phase
diagram, we propose a pure electronic phase separation (EPS).
Recent resistivity measurements near the superconducting–
insulator transition (p ≈ 0.05) support the idea that holes
doped in the system lead to an electronic phase separation
state composed of insulating and superconducting regions
coexisting at the same time [11, 12]. Our point is that such
a transition is driven by the general minimization principle
of the thermodynamic free energy. The proximity of the
antiferromagnetic (AF) order for a low doping compound
drives the system to form zero doping bubbles where this AF
order remains locally in order to maximize the entropy or
minimize the free energy of the entire system. In this way
the electrons (or holes) generate inhomogeneous regions which
increase continuously as the temperature decreases below the
transition temperature TPS(p) and freeze at lower temperatures.
We will show here that this second order EPS transition may be
used to explain the increase in superconducting and pseudogap
phases.

As mentioned above, the origin of this novel EPS
transition is the proximity to the insulator AF phase, common
to all cuprates, and it can be described in terms of the general
principle of a competing free energy minimum. As the
temperature decreases, the free energy of the homogeneous
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Figure 1. The curves show the difference in free energy
�UM(p) − FEMix(p) for some p values. The intersection with AF
free energy yields the onset of EPS, i.e. TPS(p). TPS(p) is plotted in
figure 2.

system with average density p becomes lower than the
anisotropic one for a granular bimodal distribution [3] of AF
domains with p(i) ≈ 0 and high hole density domains with
p(i) ≈ 2p. This condition can be written as

FE2D
Is � −�UM − FEMix(2p). (1)

Here �UM(p) = 3p2U (0)
M +γ pT 2/2 is the difference between

the free energy of a homogeneous fermion gas with density p
and the separate portion with hole density 2p, which is mixed
with FE2D

Is —the Onsager specific free energy for a 2D Ising
model with a spin coupling value that yields a Néel temperature
at T = 350 K—taken as a model for the AF phase [13].
FEMix(p) is the free energy of mixing [14]. In figure 1 we
show the condition for the onset of the EPS transition for some
selected values of average density p, when the lines cross the
FE2D

Is . The used value of γ is consistent with the entropy
measurements for cuprates [15]. The calculated TPS(p)

are in general agreement with the upper pseudogap values
T 0(p) [1, 2] and, more importantly, it provides a physical
interpretation for the origin of the electronic inhomogeneities
in the cuprates.

2. The electronic phase separation

Now that we have discussed why cuprates may go through
a transition to form granular charge domains, we need
a quantitative description of such a transition. For this
purpose we use the theory of Cahn–Hilliard (CH) [14] that
is appropriate for describing phase separation transitions.
The difference between the local and the average charge
density u(i, T ) ≡ ((p(i, T ) − p)/p) is the transition order
parameter, and |u| � 1. Clearly u(i, T ) = 0 corresponds
to a homogeneous system above the phase separation onset
temperature TPS(p). Then the typical Ginzburg–Landau (GL)
free energy functional in terms of such an order parameter near
the transition is given by

f (i, T ) = 1
2ε2|∇u(i, T )|2 + V (u(i, T )) (2)

Figure 2. Electronic phase diagram for cuprates. TPS marks the onset
of phase separation into the two main densities corresponding to the
two minima of the GL potential (equation (3)) as seen in the inset.
As the temperature decreases below TPS(p), the potential barrier Eg

increases and the two minima at ±A(T )/B separate from each other.

where the potential V (u, T ) = A2(T )u2/2 − B2u4/4 + · · ·,
A2(T ) = α(TPS(p) − T ), and α and B are constants that
lead to lines of fixed values of A(T )/B , parallel to TPS(p),
as shown in figure 2. The parameter ε gives the size of the
grain boundaries between two low and high density phases
p±(i) [4, 16]. The energy barrier between two grains of
distinct phases is Eg(T ) = A4(T )/B , which is proportional
to (TPS − T )2 near the transition, and becomes nearly constant
for temperatures close to TPS(p). Thus, hereafter we will use
Eg(p, T ) ≡ V (p, T ) as the grain boundary potential (see the
inset of figure 2). V (p, T ) = V (p) × V (T ), and we assume,
for simplicity, that V (p) has a linear behavior on p and that its
temperature equipotentials are parallel to TPS(p). In figure 2
we plot where the EPS transition should start, i.e. TPS(p), and
where it is detected, namely at the upper pseudogap T 0(p)

(according to [1]), both approximated by a linear function on
p. The others lines shown in the figure, like T1(p), represent
the different degrees of phase separation, which depends on the
values of A(TPS − T )/B .

For completeness, the CH equation can be written [17]
in the form of a continuity equation of the local free energy
density f , ∂t u = −∇ · J, with the current J = M∇(δ f/δu),
where M is the mobility or the charge transport coefficient.
Therefore,

∂u

∂ t
= −M∇2(ε2∇2u + A2(T )u − B2u3). (3)

We have already made a detailed study of the evolution of the
density profile in a 105×105 array as function of the time steps,
up to the stabilization of the local densities, for parameters that
yield stripe [5] and patchwork [4, 18] patterns relevant for high
critical temperature superconductors (HTSCs).

The temperature evolution of the second order EPS is
studied with the ratio A(T )/B [18]. A(T )/B = 0.2 is close
to the value of the measured upper pseudogap temperature

2



J. Phys.: Condens. Matter 21 (2009) 235701 E V L de Mello et al

Figure 3. The charge density map on a 105 × 105 system after 6400
time steps. A(T, p)/B = 0.6, which corresponds to values of T
close to the line T1 plotted in figure 2, i.e. with 0.05 < p < 0.18.
The dark (blue) grains are in the verge of becoming insulators (low
local density) and the light (red) ones are metallic like (large local
density).

T 0(p) shown in figure (2) and it is where the process of phase
segregation becomes measurable.

At A(T )/B = 0.6 the system is close to the T1 line, i.e. at
a level of disorder at which the low density grains are insulator
like and the high density ones are metallic. This crossover
line between two disordered metals and a mixture of metal and
insulator grains has been seen in many experiments [2]. In
this case, the EPS domains are clearly formed, as displayed in
figure 3, and the system is on the limit between a disordered
metal with grains of two densities and a mixture of metallic
and insulator (AF) grains. This is possibly the origin of the
instability that falls to zero near p = 0.18, as seen in many
experiments [2, 15, 19] but not detected by the STM data for
the Bi2212 series [8]. At T ≈ 0 K the domains are frozen,
and in general the low density insulator regions decrease in
number and size as p increases, but even overdoped samples
have some remaining AF grains according to our simulations,
as also experimentally verified by neutron diffraction data [20].

In order to estimate the potential that confines the holes
into the grains and its connection to the superconducting
phase, we study the evolution of free energy with time and
temperature together with the corresponding density profile.
In figure 4 we show the free energy map associated with the
density profile of figure 3, both made by the same computer
simulation. It shows that the low and high density grains, at
this temperature (60% of TPS), are already bound regions of
the free energy minimum.

As the temperature decreases below TPS, using similar
simulations to the one shown in figure 4 for various values
of temperature, it is clear that the potential barrier among
the grains or the intragrain potential V (p, T ) increases
and becomes constant at low temperatures and low p.
Consequently the holes become confined by this effective

Figure 4. Density profile of the local free energy (in arbitrary units)
in the same location and temperature as in figure 3. The lighter (red)
lines show the potential barrier among the grain boundaries. In this
way the system becomes a mixture of two disordered metals with
high and low densities (DM1 + DM2) or a mixture of (local) low
density insulators and (local) high density metallic like grains.

attraction toward the center of the grains and it may be taken
as the origin of the superconducting interaction that forms the
(intragrain) hole pairs.

3. The superconducting calculations

Intragrain superconductivity is naturally studied with the
Bogoliubov–de Gennes (BdG) theory in a similar fashion to
we did before for a phenomenological potential and a static
phase separation [4–6]. The calculations are performed on a
square lattice of 32 × 32 sites, that is, on a small part of the
charge density profile given in figure 3.

Taking the extended Hubbard Hamiltonian to describe the
hole dynamics, the diagonalizing process is made by the BdG
equations [4–6, 18] with the hopping value t = 0.15 eV,
next neighbor hopping t2 = 0.70t , on-site repulsion U =
1.3t and, most importantly, the EPS next neighbor attraction
V (p, T ) ≡ Eg(p, T ) derived from grain boundary values
or grain confining potential. Except for the temperature
dependent V (p, T ) all the others parameters are similar to
values previously used [4–6], although in a different context,
since here we are dealing with electronic phase separation.

Following our free energy simulations, from low
temperatures up to TPS(p) when the grains melt down, we can
obtain the qualitative behavior of the grain boundary potential
Eg(p, T ). In order to yield average coherent gap values
comparable with the STM data on 0.11 � p � 0.19 Bi2212
compounds [8], we find a set of parameters that can be written
as

Eg(p, T ) = V (p) × V (T )

= (−0.9 + 2.8 × p) × (1 − T/TPS)
(3−T/TPS), (4)
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where the values are in eV, V (p) is linear and vanishes at
p ≈ 0.32 following a linear approximation to TPS(p). V (T )

falls to zero near TPS(p) and increases towards T = 0 K.
In general, the CH and BdG combined calculations yield

very low or almost zero local gaps for the regions with low
densities, i.e. p(i) � 0.09. For grains with larger local
densities p(i) � 0.1, the local Fermi level is large enough
to have d-wave superconducting amplitudes �d(i, T ). We
define the local superconducting temperature Tc(i) as the
temperature at which �d(i, T ) arises in one given site ‘i ’.
The largest value of Tc(i) in a given compound determines
the pseudogap temperature T ∗(p) which marks the onset
of superconductivity. Since T ∗(p) is closely related to
the potential V (p, T ) it also increases in the overdoped
region [21], similar to the Nernst effect [22] in many other
experiments [1, 2].

As the temperature decreases below T ∗(p) and some high
density grains become superconductors, the zero resistivity
transition takes place when the Josephson coupling EJ

among these grains is sufficiently large to overcome thermal
fluctuations, i.e. EJ(p, T = Tc) ≈ kBTc(p), which leads to
phase locking and long range phase coherence. Consequently
the superconducting transition in cuprates occurs in two
steps, similar to a superconducting material embedded in a
non-superconducting matrix [23], first by the appearance of
intragrain superconductivity and then by Josephson coupling
with phase locking at a lower temperature, which provides a
clear interpretation for the pseudogap phase. Since Tc(p) is
not directly related to the local or intragrain superconductivity,
the gaps �d(i, T ) do not change appreciably around Tc(p),
especially for underdoped compounds that have large T ∗(p).
This fact is verified experimentally by temperature dependent
tunneling [24] and angle resolved photon emission [25]
experiments.

4. Results and discussions

Using the theory of granular superconductors [26], EJ(p, T ) ∝
CN(p) × �(p, T ) where CN(p) is the normal conductivity
among the grains. As shown in figure (3), the grain boundaries
are made of walls with the mean density p surrounding the
grains. On the other hand, the conductivity increases by a few
orders of magnitude with p in the Cu–O plane [27] and CN(p)

is small in the underdoped region. That is just the opposite of
the average behavior of �d(i, T ), which, following V (p, T ),
decreases as p increases. This gives some insight into the
superconducting ‘dome shape’ of the resistivity transition with
the maximum Tc around p = 0.16 in the middle of the EPS
region (TPS(p ≈ 0.32) = 0). Also EJ ∝ Jcr 2

i , where
Jc is the critical current density and ri is the average size
of the grains. Taking typical optimum doping values [28],
i.e. Jc ≈ 107 A m−2 and ri ≈ 50 Å, as one can see directly
from our figure (3) we get EJ ≈ 8 meV or Tc ≈ 90 K, which
is a good estimate for the Bi2212 optimum Tc.

Now we turn to the new STM data that motivated
the introduction of the EPS concept instead of ionic phase
separation as the origin of the HTSC inhomogeneities, which
was the idea we first developed in earlier papers [4]. We
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Figure 5. The BdG calculation for �d(i, T ) at three locations on the
32 × 32 mesh with average hole doping p ∼ 0.24. For local
p(i) � 0.9 the grains are insulator like, and the associated gaps are
not superconducting. Instead the STM signals are from activation
over the grain boundary potential and from the neighboring
superconducting grains with �d( j, T ).

first notice the presence of the p ≈ 0 AF insulator (p(i) �
0.03) and even low density domains (p(i) � 0.09) which are
closer to the half filled band and require a high energy cost to
accept extra electrons; this explains why injection of electrons
produces less STM current than extraction and also why this
asymmetry increases drastically as p decreases [29].

Figure 5 shows some of the local BdG superconducting
amplitude calculations at selected points in the Cu–O plane, as
in figure 3, for comparison with the high temperature STM data
of overdoped (p ≈ 0.22–0.24) Bi2212 compounds [9, 10].
The smaller coherent gaps �d(i, T ) are calculated for two
random different locations in metallic grains. The larger
gaps originated in the insulator grains and they are due to
activation over the grain boundary barrier Bi j(T ) that is
derived from the grain boundary potential V (p, T ) and the
calculated �d( j, T ) from a neighboring metallic grain j . As
one can see in the local gap maps from the STM experiments,
at temperatures above Tc(p) they are always surrounded by
a small superconducting region [9, 10]. Another result of
the BdG local superconducting calculations is that, despite
the uncertainty on Tc(i) for very small gaps, the results like
those displayed in figure 3 follow closely the experimentally
measured relation 2�d(i, T = 0 K)/kBTc(i) ≈ 8 [9].

The local superconducting gap can be also obtained in the
context of the BdG equations through the study of the local
density of states (LDOS), which is given by

Ni (E) =
∑

n

[|un(xi)|2 f
′
n(E − En) + |vn(xi)|2 f

′
n(E + En)],

(5)
where the prime is the derivative with respect to the argument.
This equation allows us to calculate the local gap at any
point ‘i ’ or any location of an inhomogeneous system at any
temperature. En are the eigenvalues of the BdG equation.
The difference between this equation and the calculations of
�d(i, T ) is that it yields any suppression in the LDOS, whether
from superconducting or for any other process, like bound
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states in the low density grains. Following the CH calculations,
we study the LDOS on a sample as shown in figure 3.

In panel (a) of figure 6 we show the ratio LDOS(T)/LDOS
(60 K) for an overdoped compound with p ≈ 0.235 at a
high density puddle (with p(i0) ≈ 2p) where the d-wave
superconducting amplitude is �d(i0, t = 0) = 0.24 meV,
one of the largest in the system. This choice of p is only
for comparison with the STM experimental results [10]. As
in figure 5 the local amplitude goes to zero near Tc(i0) ≈ 72 K.
In panel (b) we study the LDOS in a low density cluster at
a point with p(i) almost zero, i.e. at a location inside an
AF grain. In this case, the local amplitude �(i, T ) = 0
and the large peaks seen in the figure are local pseudogaps
which are related to the inhomogeneous potential of the
phase separation. They are generally 50–70% larger than
a typical superconducting (coherent) gap in the sample with
p ≈ 0.23. This shows unequivocally the presence of a
pseudogap as it comes from the phase separation or grain
boundary electronic confining potential that suppress spectral
weight, and it is present everywhere. The origin of the
pseudogap is clearly due to the inhomogeneities in the local
charge density because it is completely absent in calculation
with homogeneous densities. Notice that the pseudogap is
almost constant at low temperatures but decreases as the
temperature increases because overdoped samples have a low
phase separation temperature TPS. In panel (c) of figure 6,
as a demonstration that the pseudogap is present everywhere,
we calculate the LDOS also at the same location as for the
calculations in panel (a) but at a large bias interval to enclose
both the superconducting gap and the pseudogap.

Notice that the result displayed in figure 6(c) resembles
the results from tunneling spectroscopic measurements [30],
especially those where the superconducting gap and the
pseudogap are distinguished [31]. As was clear in these
studies, the superconducting gap is much more sensitive to
the temperature than the pseudogap. However, we can see
in figures 6(b) and (c) that pseudogap also varies with the
temperature, but this effect is stronger in the overdoped regime,
as in the compound we are dealing with (p = 0.23), due
to the low values of TPS(p). For underdoped compounds the
pseudogap changes very little with temperature near to and
below the critical temperature Tc(p), and this will be subject
of another publication.

One of the main consequences of our calculations is shown
in figures 6(a) and (b). The STM measurements by Pasupathy
et al [10] demonstrated that the local conductivity (dI/dV ,
where I is local current and V the applied bias) is lower in
regions with larger gaps. This result is completely unexpected,
because the gaps measured by STM were believed to be all
d-wave superconducting ones and, consequently, larger local
gaps are associated with larger local densities and greater local
metallic behavior. Figure 6(b) shows a large pseudogap in
a low density region where the BdG calculations yield zero
superconducting amplitude which always occurs at the grains
with very low local hole density. Usually the pseudogaps are
larger than the superconducting gaps, and as we have shown
they occur in the very low density grains which display a
more insulator-like behavior, in agreement with the findings
of Pasupathy et al [10] (see their figures 4(a)–(c)).
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Figure 6. (a) The calculated LDOS at a location with one of the
largest local superconducting d-wave gaps, namely �d ≈ 20 meV.
(b) The LDOS at a location without d-wave superconducting
amplitude; nevertheless the LDOS displays a suppression in the
spectral weight associated with the pseudogap. (c) Calculations for
the same place as in panel (a) but at a larger bias interval in order to
capture both the pseudogap and the d-wave gap.

5. Conclusions

In conclusion we have proposed a new universal electronic
phase in cuprate superconductors driven by the general
thermodynamics principle of minimum free energy. The
presence of AF order in the parental compound generates
competition between an electronic homogeneous system and
one composed of low density grains and grains with local
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AF order and high density. Consequently, as the temperature
decreases below the transition temperature the system becomes
essentially made of disordered low and high charge density
grains or puddles and their local doping differences are larger
at lower temperatures. The grains are essentially static but
melt slowly and disappear near TPS(p), generating the complex
behavior of the normal HTSC phase. The different lower
pseudogap lines detected in many experiments, some falling
to zero temperature near p = 0.19 and some near the
superconductivity onset at p = 0.27, are likely to be different
aspects of the varying disorder of this second order phase
transition. The grain boundary potential confines the holes
to nanoscopic regions and gives rise to the superconducting
pairing potential.

Such an anomalous phase arises due to the proximity to the
AF undoped insulator, and may be common to other materials
with similar doping dependent phases, like manganites which
also possess a pseudogap phase [32]. The understanding of
these features may open the possibility of new technologies and
the development of materials with a large resistivity transition
Tc.
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